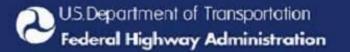


Tashia J. Clemons Federal Highway Administration Office of Asset Management

Objective

FHWA Updates & LCCA


- 1. FHWA Updates
- 2. LCCA program status
- 3. State Example

FHWA Updates

Keeping Good Roads Good 2010-2011

Keeping Good Roads Good

Corridor assessment

- I-95 corridor
- What data are states using to manage "conditions" of I-95
- Common performance indicators
- Good, Fair or Poor
- MD-DE-VA
- "Evaluation of Highway Performance Measures for a Multi-Study Corridor - A Pilot Study" <u>http://www.fhwa.dot.gov/asset/hif10015/</u>

Keeping Good Roads Good

Infrastructure Health Project

- o 2 objectives
 - 1. Identify performance indicators
 - Good, fair & poor
 - Condition Data needed
 - Reported
 - 2. Identify pavement health indicators
 - What do we need to measure

Maintenance Leadership Academy

- Four-week training, blended learning
- Target audience: state and local maintenance supervisors
- Strong emphasis on preservation and performance improvement

Maintenance Leadership Academy

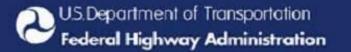
Six Modules

- ✓ Maintenance Management
- ✓ System Preservation
- ✓ Roadsides and Drainage
- ✓ Weather-related Operations
- ✓ Safety and Workzones

Life-Cycle Cost Analysis

LCCA Program Status

Distance Learning Course


Onsite RealCost LCCA Workshop

RealCost User Manual

Technical Bulletin

Bridge LCCA

Life-Cycle Cost Analysis Definition

 Life-Cycle Cost Analysis is a process for evaluating the total economic worth of a usable project segment by analyzing initial costs and discounted future costs, such as maintenance, user, reconstruction, rehabilitation, restoring, and resurfacing costs, over the life of the project segment.

Source: Transportation Equity Act for the 21st Century

Pavement Preservation vs. Reconstruction

State Examples

Arizona State DOT

Washington State DOT

Pavement Preservation vs. Reconstruction

Arizona Department of Transportation

- Continuous weakening of substructure material
- Cost & performance

Sponsored a Study - Cost-Benefit Analysis of Continuous
Pavement Preservation Design Strategies Versus Reconstruction
Final Report 491

Prepared by: K.L. Smith, L. Titus-Glover, M.I. Darter, H.L. Von Quintus, R.N. Stubstad, and J.P. Hallin

Arizona Department of Transportation

- o Break-even
- \circ Continuous preservation
- Rehabilitation treatments

Arizona Department of Transportation

Life-Cycle cost Analysis (LCCA)

- Probabilistic approach
- FHWA's LCCA spreadsheet program
- RealCost, Version 2.1 (FHWA, 2004)

Input Analysis

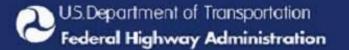
- ✓ Pavement performance
- ✓ Service life estimates
- ✓ Best estimates of unit costs
- ✓ Work zone-related user cost
- ✓ Discount rates
- ✓ Analysis period

Alternative Strategies

- Life Cycle Cost
 - o 4 strategies
 - 15 commonly occurring pavement scenarios

Traffic Info Used in LCCA

Project ID	AADT, veh/day ª	Cars as Percenta ge of AADT, %	Percent Single Trucks ^b	Combo	Annual Growth of Traffic, %	Speed Limit, mi/hr	Lanes Open ^c	Free Flow Capacit y, vphpl	Rural or Urban? ^d	Queue Dissipa tion Capacit y, vphpl	Maximu m AADT, veh/day e	Maximum Queue Length, mi
Cell 1	10,000	77	13	10	2.5	70	2	2,200	Rural	1,800	100,000	4
Cell 2	18,000	72	18	10	2.5	70	2	2,200	Rural	1,800	100,000	4
Cell 3	13,000	85	5	10	2.5	55	1	2,200	Rural	1,800	100,000	4
Cell 4	6,000	84	6	10	2.5	55	2	2,200	Rural	1,800	100,000	4
Cell 5	7,500	83	7	10	2.5	55	2	2,200	Rural	1,800	100,000	4
Cell 6	17,000	66	24	10	2.5	70	2	2,200	Rural	1,800	100,000	4
Cell 7	23,000	75	15	10	2.5	70	2	2,200	Rural	1,800	100,000	4
Cell 8	9,000	79	11	10	2.5	55	2	2,200	Rural	1,800	100,000	4
Cell 9	14,000	80	10	10	2.5	55	1	2,200	Rural	1,800	100,000	4
Cell 10	1,400	83	7	10	2.5	55	1	2,200	Rural	1,800	100,000	4
Cell 11	17,000	66	24	10	2.5	70	2	2,200	Rural	1,800	100,000	4
Cell 12	80,000	85	5	10	2.5	55	3	2,200	Urban	1,800	100,000	4
Cell 13	25,000	75	15	10	2.5	70	2	2,200	Rural	1,800	100,000	4
Cell 14												
	240,000	81	9	10	2.5	55	5	2,200	Urban	1,800	100,000	4
Cell 15	75,000	86	4	10	2.5	55	3	2,200	Urban	1,800	100,000	4


Agency Construction Cost

Bid Item	Unit	Description Bid Item Components	Unit Price	Quantity Per Day	
Asphalt Concrete	ton	Asphalt Concrete Friction Course	\$28.13	2,000	
Friction Course (FC)	ton	Asphalt Cement for ACFC	\$154.03		
	ton	Mineral Admixture for ACFC	\$97.42		
Asphalt Rubber	ton	Asphalt Rubber AC Friction Course	\$29.44		
AC Friction Course	ton	Asphalt Cement for AR-ACFC	\$274.99	2,000	
(FR)	ton	Mineral Admixture for AR-ACFC	\$97.42		
Acabalt Concrete	ton	Asphalt Concrete (3/4" Mix)	\$22.09		
Asphalt Concrete	ton	Asphalt Cement for AC (3/4" Mix)	\$154.03	2,000	
(AC)	ton	Mineral Admixture for AC (3/4" Mix)	\$97.42		
Acphalt Bubbor	ton	Asphalt Rubber AC	\$25.65		
Asphalt Rubber	ton	Asphalt Cement for AR-AC	\$260.48	2,000	
AC (AR)	ton	Mineral Admixture for AR-AC	\$97.42		
Continued					

U.S.Department of Transportation Federal Highway Administration

Agency Construction Cost

Bid Item	Unit	Description Bid Item	Unit	Quantity Per
Did item		Components	Price	Day
	yd²	Milling depth = 0.5"	\$0.54	20,000
	yd²	Milling depth = 1.0"	\$0.76	18,000
	yd²	Milling depth = 2.0"	\$1.10	16,000
Bituminous	yd²	Milling depth = 2.5"	\$1.25	15,000
Pavement	yd²	Milling depth = 3.0"	\$1.35	14,000
(milling)	yd²	Milling depth = 3.5"	\$1.40	13,500
	yd²	Milling depth = 4.0"	\$1.50	13,000
	yd²	Milling depth = 4.5"	\$1.60	12,500
	yd²	Milling depth = 5.0"	\$1.70	12,000
	yd²	11.0-in PCC	\$27.00	
JPC	yd²	12.0-in PCC	\$29.00	
(nondoweled	yd²	12.5-in PCC	\$30.00	2,500
PCC)	yd²	13.0-in PCC	\$31.00	
	yd²	13.5-in PCC	\$32.00	
Continued				

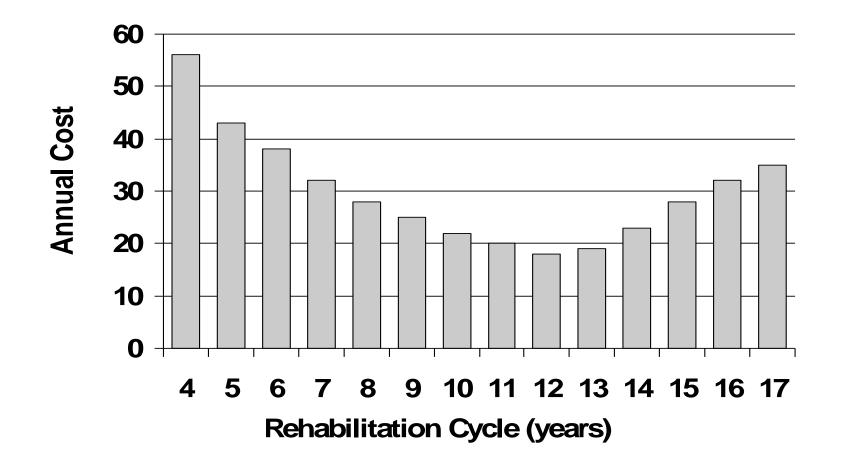
Value of Time

Parameter	Cost
Value of Time for Passenger Cars (\$/hour)	\$3.08
Value of Time for Single Unit Trucks (\$/hour)	\$20.95
Value of Time for Combination Trucks (\$/hour)	\$25.21

Final results

- Reduction in total LCC
- Increase (from 0 to 2) in the number of rehabs between original construction and the first reconstruction events
- 9 of the 15 scenarios
- Break-even point
 - Occurs after 2 to 3 cycles of rehab

Pavement Preservation vs. Reconstruction


Washington State DOT

- 1993 Revised Code WA
 - Required project selection be based on the lowest life cycle cost concept
 - Optimal timing (opportunity window) 2 to 3 yrs

U.S.Department of Transportation Federal Highway Administration

Life-Cycle Cost Analysis

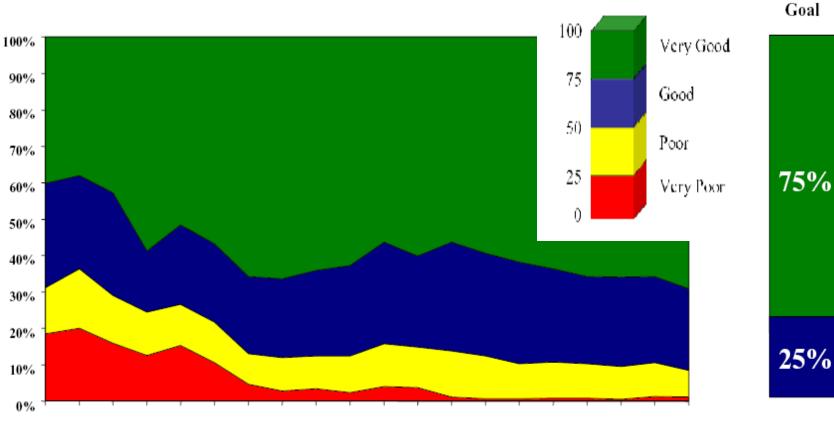
Washington State DOT

Network level Economic Analysis

- Design life yielded the most benefits
- Pavement Management System (PMS)
 - Pavements
 - Anticipated deterioration curves
 - Rehabilitation activity cycles
 - $_{\odot}$ Anticipated costs in the year the activity would occur

- "worst first" to " a needs based approach".
- 3 performance measures of pavement distress.
 - 1. Pavement Structural Condition (PSC)
 - 2. International Roughness Index (IRI)
 - 3. Rutting

Minimum Rating


- \circ 50 for PSC
- 220 inches/mile for IRI
- \circ 10 mm (.4 in) for rutting
- The LCCA validation process was conducted again in 2000

WSDOT

Washington State DOT

Pavement Structural Condition (Statewide - All Pavements)

1971 1973 1975 1977 1979 1981 1983 1984 1986 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998

- Lowest LCC by conducting preservation activities
 - Early stages of deterioration to prolong their life
 - Need for major rehabilitation

- Success is measured by network condition of their pavements
- o **In 1971**
 - \circ 50% poor conditions
- o Today
 - $_{\odot}$ Less 10% are in poor condition

Resource Documentation

• Arizona report

Cost-Benefit Analysis of Continuous Pavement Preservation Design Strategies Versus Reconstruction

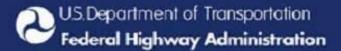
http://www.fhwa.dot.gov/infrastructure/asstmgmt/lcca.cfm

• FHWA Case Study

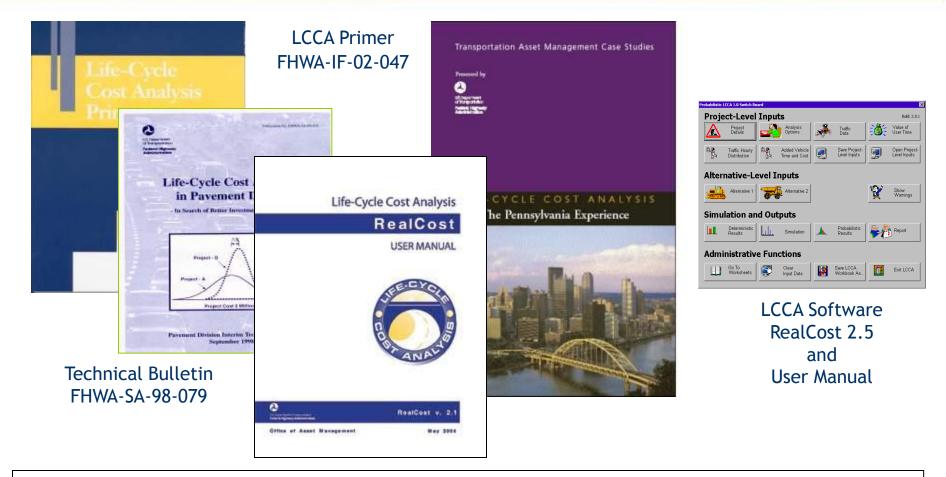
Pavement Management Systems

The Washington State Experience

http://www.fhwa.dot.gov/pavement/pub_details.cfm?id=626


Resources

Training


Fundamentals of Life Cycle Cost Analysis Live Instructor Led Distance Learning Course

Onsite RealCost Life-Cycle Cost Analysis (LCCA) Software Workshop

http://www.fhwa.dot.gov/infrastructure/asstmgmt/lcca.cfm

Resources

http://www.fhwa.dot.gov/infrastructure/asstmgmt/lcca.cfm

Thank you

Tashia J. Clemons tashia.clemons@dot.gov FHWA HQ Office of Asset Management 1200 New Jersey Ave SE Washington, DC 20590 202-366-1569

http://www.fhwa.dot.gov/infrastructure/asstmgmt/lcca.htm